
CMR-1168 Orbital backtracking issue
The two possible interpretations of start circular latitude and orbits are given (Dan’s rendering) in figure 1.

Figure 1 - Alternate interpretations of collection start circular latitude

On the left drawing, orbits begin at the equator and fractional orbit granules like the shaded region will lie on more than one orbit if they cross the
equator. In the right drawing, orbits begin at the designated start circular latitude and a fractional orbit granule can never lie on more than one.
The backtracking algorithm as implemented in the CMR/ECHO is based on the second interpretation.

Jason provided the following from 2008:

Ross swick info from 11003537

 

I found during testing of NCR 11003519 that I could not find a GLA05 granule after it was ingested.  It
turns out that the parameters set in the NSIDC XSLT were incorrect.   Below is an email from Ross Swick
with the changes to apply.

 

From Ross Swick:

We took a look at the granule you referenced and found this bit of

metadata in the .met file:



 

OBJECT = AdditionalAttributesContainer

            Data_Location = "NONE"

            Mandatory = "TRUE"

            Class = "2"

            OBJECT = AdditionalAttributeDatatype

                Data_Location = "MCF"

                Mandatory = "TRUE"

                Class = "2"

                NUM_VAL = 1

                Value = "int"

                TYPE = "STRING"

            END_OBJECT = AdditionalAttributeDatatype

            OBJECT = AdditionalAttributeDescription

                Data_Location = "MCF"

                Mandatory = "TRUE"

                Class = "2"

                NUM_VAL = 1

                Value = "Number assigned for the specific latitude

segment (1 = +50 to +50, 2 = +50 to -50, 3 = -50 to -50, 4 = -50 to +50)

of the track for the data."

                TYPE = "STRING"

            END_OBJECT = AdditionalAttributeDescription

            OBJECT = AdditionalAttributeName

                Data_Location = "MCF"

                Mandatory = "TRUE"

                Class = "2"

                NUM_VAL = 1

                Value = "Track_Segment"

                TYPE = "STRING"

            END_OBJECT = AdditionalAttributeName

            GROUP = PhysicalParameterDetails

                Class = "2"

                OBJECT = ParameterUnitsofMeasurement

                    Data_Location = "MCF"

                    Mandatory = "TRUE"

                    NUM_VAL = 1

                    Value = "counts"

                    TYPE = "STRING"

                END_OBJECT = ParameterUnitsofMeasurement



                OBJECT = ParameterRangeBegin

                    Data_Location = "MCF"

                    Mandatory = "TRUE"

                    NUM_VAL = 1

                    Value = "1"

                    TYPE = "STRING"

                END_OBJECT = ParameterRangeBegin

                OBJECT = ParameterRangeEnd

                    Data_Location = "MCF"

                    Mandatory = "TRUE"

                    NUM_VAL = 1

                    Value = "4"

                    TYPE = "STRING"

                END_OBJECT = ParameterRangeEnd

            END_GROUP = PhysicalParameterDetails

        END_OBJECT = AdditionalAttributesContainer

 

So it looks like "Track_Segment" is just an indicator of which quarter

of the orbit this file is.  They vary from 1-4 with segment 1 starting

at 50 North (+50) ascending, going (nearly) over the North pole, ending

at 50 North (+50) descending.  Segment 2 starts at 50 North (+50)

descending, crosses the equator descending, and ends at 50 South (-50)

descending.  Segment 3 starts at 50 South (-50) descending, goes

(nearly) over the south pole, and ending at 50 South (-50) ascending.

The file you are concerned about is a segment 4 file.  It starts at 50

South (-50) ascending, crosses the equator ascending, WHICH IS THE ORBIT

BOUNDARY, and ends at 50 North (+50) ascending.

 

SO your xslt is nearly correct:

 

> <xsl:variable name="trackNumber"

>>>                                                             select="../PSAs/PSA[PSAName =
'Track_Segment']/PSAValue" />

>>>

>>>                                                     <xsl:choose>

>>>                                                             <xsl:when test="$trackNumber='1'">

>>>                                                                     <StartLat>50</StartLat>

>>>                                                                     <StartDirection>A</StartDirection>

>>>                                                                     <EndLat>50</EndLat>

>>>                                                                     <EndDirection>D</EndDirection>

>>>                                                             </xsl:when>



>>>                                                             <xsl:when test="$trackNumber='2'">

>>>                                                                     <StartLat>50</StartLat>

>>>                                                                     <StartDirection>D</StartDirection>

>>>                                                                     <EndLat>50</EndLat>

>>>                                                                     <EndDirection>D</EndDirection>

>>>                                                             </xsl:when>

>>>                                                             <xsl:when test="$trackNumber='3'">

>>>                                                                     <StartLat>50</StartLat>

>>>                                                                     <StartDirection>D</StartDirection>

>>>                                                                     <EndLat>50</EndLat>

>>>                                                                     <EndDirection>A</EndDirection>

>>>                                                             </xsl:when>

>>>                                                             <xsl:when test="$trackNumber='4'">

>>>                                                                     <StartLat>50</StartLat>

>>>                                                                     <StartDirection>A</StartDirection>

>>>                                                                     <EndLat>50</EndLat>

>>>                                                                     <EndDirection>A</EndDirection>

>>>                                                             </xsl:when>

>>>                                                     </xsl:choose>

 

 

I wouldn't use trackNumber as the variable name if what you are keying

off is the track SEGMENT.  "Track Number" has another meaning so using

it for the variable name here can lead to confusion.

 

Otherwise you just have a few sign errors. Everything starts and ends at

 plus OR minus 50 - you only have +50.  Track segment 1 is correct.

Segment 2 ends at -50, segment 3 starts and ends at -50, and segment 4

starts at -50.

 

The directions look correct.

 

So then using the algorithm you've got start and end circular latitudes

like so:

 

Segment 1: (50, 130)

Segment 2: (130, 230)

Segment 3: (230, 310)

Segment 4: (310, 50)

 



1.  
2.  
3.  
4.  
5.  

1.  
2.  
3.  

a.  
b.  
c.  

Segment 4 is a bit problematic because it crosses the orbit boundary,

which is why there's the special case in the algorithm that Lei pointed

out.  SO you actually end up with:

 

Segment 4: (310, 410)

And that is with the data indexed to the first crossing.

I checked and the indexed start and stop clats for the granule are indeed 310, 410. Initially I thought that we were in agreement that the second
interpretation (rightmost drawing) is the correct one and that the problem is that the start clat for the collection is incorrectly set to -50 when it
should be +50. Talking with Jason I am no longer convinced of this.

Next steps:

 

 Change the start circular latitude for the collection to +50 and verify that this results in correct granules being found. 
Come to an understanding of exactly why this was a problem and how this fixes it.
Determine if this is an isolated problem or if this impacts other collections.
Depending on the answer to 2, contact NSIDC to work out a plan to correct the metadata.
Add an integration test to compare Orbital Backtracking results to granule polygon search results.

 

 For the granules the test should calculate polygons which will be matched against a set points covering the earth. Then searches 

    The integration test should do the following:

ingest the collections from production that contain orbit information as well as their granules.
Compute polygons for all the granules.
Iterate over a set of points that cover the earth and for each point

Find the granules whose polygons intersect the point
Do a spatial search to get all the returned granules for the point (these are the backtracking results)
Compare the two sets and fail if they are different

Update: Leo and James tried setting the start circular latitude for the collection to +50 deg and the false positive still occurred. Using 0 deg did not
work either. 

It is unclear how the collection StartCircularLatitude is used in the orbit back tracking algorithm. I can see how the back tracking algorithm works
for whole multiple orbits (where the echo-orbits denormalizeLatitudeRange function finds ranges of circular latitude for the orbit that would satisfy
the latitude condition of the search area, and the granule equator crossing longitude matching against the equator crossing longitude condition
calculated from the back tracking algorithm), but not sure how it could possibly work for partial multiple orbits.

 

Update 2: Patrick has determined that the issue lies with the search area crossing the start circular latitude for the collection. The search area
needs to be split into two areas, one above the start circular latitude and one below it. The top area will have one crossing range plus (start
circular latitude, top latitude) as its latitude range and the bottom area will a different crossing range plus  (bottom latitude, start circular latitude)
as its latitude range. This will require changes to the echo_orbits library and the CMR Clojure code that generates the orbital back tracking search
condition.

Also, Patrick has determined the problem with the KML generation for granules is due to a simple sign error. This fix is being incorporated into the
changes to fix the start circular latitude bug.

 

 

 


	CMR-1168 Orbital backtracking issue

